SEM 2, 2023-24: TOPOLOGY MID-SEMESTRAL EXAMINATION

Solve any 5. Each question carries 5 marks. Total: 25 marks. Time: 3 hrs. You may apply any results proven in class without proofs, but clearly state the result you are using. If a question specifically asks for the proof of a

result covered in class, you must provide a detailed proof.

- (1) Show that a topological space X is Hausdorff if and only if the diagonal $\Delta_X := \{(x, x) \in X \times X | x \in X\}$ is a closed subspace of $X \times X$.
- (2) For each natural number $n \ge 1$, let $f_n : [0,1] \to \mathbb{R}$ be the function defined by $x \mapsto x^n$.
 - (a) Show that $(f_n(x))_n$ converges for each $x \in [0,1]$.
 - (b) Show that $(f_n)_n$ does not converge uniformly. (Recall a sequence of functions f_n converges to a function f uniformly if given $\epsilon > 0$ there exists an integer N such that $|f_n(x) - f(x)| < \epsilon$ for all $n \ge N$ and for all x).
- (3) Let ℝ[∞] ⊂ ℝ^ω denote the set of all real valued sequences that are eventually zero, i.e, those sequences (x_n)_{n∈ℕ} such that x_n = 0 for all but finitely many values of n. Compute the closure of ℝ[∞] in ℝ^ω in any two of the following topologies on ℝ^ω and justify your answer:
 (a) Product topology, (b) uniform topology, (c) box topology.
- (4) Let (X, d) be a metric space.
 - (a) Show that $d: X \times X \to \mathbb{R}$ is continuous (for the product of the metric topology on $X \times X$).
 - (b) Show that given any topology \mathscr{T} on X such that $d: X \times X \to \mathbb{R}$ is continuous for the product topology on $X \times X$, \mathscr{T} is finer than the metric topology.
- (5) Let $f: X \to Y$ be a function between topological spaces X and Y. Let A, B be closed subspaces of X such that $X = A \cup B$ and $f|_A: A \to Y$ and $f|_B: B \to Y$ are continuous functions. Then show that $f: X \to Y$ is continuous.
- (6) The "line with two origins" is defined as $X = (\mathbb{R} \setminus \{0\}) \cup \{0^+, 0^-\}$ with the topology consisting of open sets in $\mathbb{R} \setminus \{0\}$ and sets of the form $U^+ := (U \setminus \{0\}) \cup \{0^+\}$ and $U^- := (U \setminus \{0\}) \cup \{0^-\}$ for $U \subset \mathbb{R}$ open and containing 0.
 - (a) Show that this is indeed a topology on X
 - (b) Prove that X is not metrizable.

HINT: Prove X is not Hausdorff.

(7) Suppose X is a topological space and $A \subset B \subset X$. Show that A is dense in X if and only if A is dense in B (in the subspace topology) and B is dense in X. (Recall a subset $Z \subset Y$ of a topological space Y is dense in Y if the closure of Z is Y).

Date: 19.02.2024.